

P3 digital services GmbH SofDCar Konsortium 1

SOFDCAR CONSORTIUM

WHITEPAPER

„ML algorithms-based signal boosting based on
synthetic automotive CANbus data”

Published by: P3 digital services GmbH
Authors: L. Shianios, L. Limley, F. Laye, P. Ambrosch, M. Juschkin
Issue date: November, 24th 2023

P3 digital services GmbH SofDCar Konsortium 2

Contents
1. Introduction ..3

1.1 About SofDCar project ...3

1.2 Motivation for HiL in the Cloud (HiC) ...3

1.3 System architecture ...3

1.4 Summary ...5

2. Definition of the test set ...6

2.1 Selected data ...6

2.2 Testing setup ...9

2.3 Testing pipeline ... 10

2.4 Handling signal noise ... 11

2.5 Summary of test set... 12

3. Machine Learning methods ... 13

3.1 Selected methods .. 13

3.2 Summary methods .. 14

4. Findings & conclusions .. 15

4.1 Validation metrics.. 15

4.2 Optimization of the hyperparameters .. 15

4.3 Validation by data type .. 15

4.4 Validation by signal noise .. 16

4.6 Chapter summary .. 18

5. Real-time boosting capability of HiL in the Cloud web system.. 19

5.1 Way forward ... 19

5.2 Challenges of real-time achievement ... 19

5.3 Chapter Summary .. 22

II. List of figures... 24

III. List of Tables ... 24

P3 digital services GmbH SofDCar Konsortium 3

1. Introduction

1.1 About SofDCar project

The Software-Defined Car project (SofDCar) is a partially publicly funded research program. It is
sponsored by the German Ministry of Business Affairs and Climate Control (BMWK) and focuses on the
challenges of future electric/electronics and software architecture in vehicles.

1.2 Motivation for HiL in the Cloud (HiC)

The strong upward trend in offered SW-enabled functionalities in cars increases the complexity of
testing and validation significantly. The idea of the “HiL in the Cloud” (HiC) concept (also referred to as
HiC platform concept) is to be able to connect electronic control units (ECU) location-independently
from each other to a performant communication network. This would help to reduce shipping times
for ECU to testbenches and therefore increase the possible maximum number of iteration cycles per
development phase. Beside that cost savings with regards to shipping cost and developer capacities
are a future potential of the concept.

The target of the research project is to assess to which extent the HiC concept can deliver reliable
testing results. Real-time criticality is one focus point of the research. The ideal case would be that the
complete network setup behaves just like the wired connection of a vehicle bus (as in regular
“hardware in the loop” setups). As additional factors regarding signal latencies become relevant in the
communication network, various approaches, and methods to increase real-time “capability” are
investigated using different machine learning algorithms. As a basic demonstration case a test build-
up with one transmitting and one receiving ECU was chosen.

The message broker of the web system through which all signals pass detects increased latency to the
transmitting ECU. Pretending the delayed signal would be only static and transmitted cyclically, it is a
relatively simple task to transmit it to the receiving ECU and check in hindsight if the transmitting ECU
would have sent the message correctly and in time. Now most signals inside a car are not just static
and transmitted cyclically. Therefore, the system must listen to the whole CANbus for a certain amount
of time and cluster the signals into a variation of formulae using machine learning. At this stage our
research does not cover all signal cases (e.g. sudden events like a crash) by the current approach – yet
the researched concept has potential to ease testing and validation for a variety of basic functionalities
significantly.

1.3 System architecture

In Figure 1: High level diagram of HiL in the cloud. The deployment diagram of the HiC platform is
presented – the entire system is composed from several microservices composed to larger systems.
The users interact with the system through the HiL in the Cloud platform. All the ECU generated data
is going through the ‘Speedy Lane’ of the system and all computations on the data are executed in the
Computer Lane. The management platform handles all the requests coming from the HiL in the cloud
platform and interacts with the Data Lake where all data is stored.

P3 digital services GmbH SofDCar Konsortium 4

Ray is used as the main compute engine for the
Computer Lane. Ray is an open-source unified
framework used to scale AI and Python
applications. It can be used to [1]

• parallelize ML model training,
• hyperparameter optimization and

tuning of ML models,
• scaling the deployment of models in

production,
• can be used as a distributed systems

engine.

The real time enhancer is deployed as a
separated service with three main components.

• An mqtt client that subscribes to the
MQTT broker, to fetch messages
exchanged between ECUs and the Test
Runner.

• The latencies handler, which it sends
on regular intervals requests to the
EMQX’s “slow subscription statistics”
[2] model to retrieve the latencies of the
ecus.

• The signal booster, that is the actual ML model, is being fed the messages from the client and
the latencies from the handler. The output of the model is published to the EMQX broker via
the mqtt client.

A basic interaction between the
components of the speedy lane
is presented in Figure 2.

Kubflow is part of the compute
lane of the system, and it is
responsible to handle the
deployment of the machine
learning (ML) models on the
Kubernetes cluster and
managing the resources they
need both during training and
inference time.

Figure 1: High level diagram of HiL in the cloud.

Figure 2: Deployment diagram of Speedy Lane of HiL in the cloud platform

P3 digital services GmbH SofDCar Konsortium 5

Some of Kubflows main features are [3]:

• built-in integration with Jupyter notebooks, one of the main IDEs data scientists and machine
learning engineers use to explore data and experiment with ML models,

• supports multi-user isolation,
• workflow orchestration,
• identity-based authentication and authorization via Istio integration.

Usually, Kubflow, as with Kubernetes, is used via a distributor like Azure, AWS, or Google Cloud, but it
can also be installed in self-hosted servers.

MLFlow can also be part of the Compute Lane, and its main responsibilities are [4]:

• tracking ML experiments,
• packaging ML code for reusability,
• providing a centralized model store.

1.4 Summary

• The aim of this R&D project is to test whether HiL testing can be conducted over the cloud.
• Strict latency requirements make this a challenging problem.
• Machine learning and time series analysis may help battle latencies and enhance the real-time

abilities of the system.
• Kubflow is used as the resource management system for ML components.
• Ray is used as the distributed and parallel compute engine for the system.
• MLFlow can be used to keep track of experiments and a centralized model repository.

P3 digital services GmbH SofDCar Konsortium 6

2. Definition of the test set

2.1 Selected data

At its core, a car is an extraordinarily complex construct, both mechanically and digitally. In modern
vehicles, numerous sensors and microprocessors work in a sophisticated interplay to perform the most
diverse tasks – from monitoring and controlling mechanical functions to analyzing and processing large
volumes of data. Every switch, sensor and actuator continuously generate data that is collected,
transmitted, and processed within the vehicle system. At the same time, the vehicle communicates
with external sources, exchanging information with other vehicles, traffic infrastructure and possibly
even global databases / cloud applications. This increasing data volume generated and processed by a
modern vehicle makes it possible to analyze and understand complex patterns and correlations. For
example, driving behavior can be optimized, safety can be increased, or fuel consumption is minimized.

In this overly complex data landscape managed within a car, advanced algorithms and artificial
intelligence are used to analyze vast amounts of information and gain useful insights. Impressively, all
this is done within a compact and mobile unit such as a car. The level of complexity involved in the
design and manufacturing of a modern car is a testament to the state of the art in engineering,
computer science and data analysis. To manage the complexity of a modern vehicle, we need to
streamline our focus for this paper.

Specifically, we will concentrate research on sensor data and actuators. These components are vital as
they generate data and perform physical actions in the vehicle. Understanding the interplay between
these two types of components is essential as it sets the foundation for our analysis. Predictive
analytics uses the data provided by sensors to anticipate future vehicle performance or issues. Our
narrowed focus allows us to model and analyze how sensor inputs trigger actuator responses and
anticipate the responses. This streamlined approach can help with early fault detection, preventive
maintenance, and improving overall vehicle efficiency. By reducing the complexity to focus on sensor
data and actuators, we can explore these potentials in a clear and concise manner.

Sensor Signal type Function type Behavior

Speed Sensor Continuous 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 × sin (2𝜋𝜋𝜋𝜋𝜋𝜋) Periodic

Temperature
Sensor

Continuous 𝑇𝑇(𝑡𝑡) = 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑘𝑘 × log (𝑡𝑡 + 1) Logarithmic, Linear (over
certain temperature range)

Torque Sensor Continuous 𝜏𝜏(𝑡𝑡) = 𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑒𝑒𝑘𝑘𝑘𝑘 Exponential

Acceleration
Sensor

Continuous 𝑎𝑎(𝑡𝑡) = 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 × sin (2𝜋𝜋𝜋𝜋𝜋𝜋) Periodic, Linear (at constant
acceleration)

P3 digital services GmbH SofDCar Konsortium 7

Light Sensor Discrete 𝐿𝐿(𝑡𝑡) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(|sin (𝜋𝜋𝜋𝜋𝜋𝜋)|) Periodic, Steady State (at
constant light)

Ultrasonic
Sensor

Continuous 𝑈𝑈(𝑡𝑡) = 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 × |sin (2𝜋𝜋𝜋𝜋𝜋𝜋)| Periodic, Steady State (at
constant distance)

Tire Pressure
Sensor

Continuous 𝑃𝑃(𝑡𝑡) = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑘𝑘𝑘𝑘 Exponential, Steady State (at
constant pressure)

Oxygen Sensor Continuous 𝑂𝑂(𝑡𝑡) = 𝑂𝑂𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑘𝑘 × log (𝑡𝑡 + 1) Logarithmic, Steady State (at
constant 𝑂𝑂2 level)

Table 1: Sensors and their signals

To pursue this focused analysis effectively, we have defined a synthetic dataset that considers specific
sensors and actuators. This dataset allows us to isolate and analyze the interactions between the
sensor inputs and actuator outputs, while eliminating the influence from other data that is not relevant
for our current research purpose. The synthetic dataset is a representation of complex real-world data
in a simplified form, providing a practical tool for examining the relationships between sensor data and
actuator responses. This is a crucial step towards building an effective model, and it will be the basis
of our further investigations in this paper.

In Table 1, you can see eight chosen sensors with their mathematical signal descriptions. Each of these
sensors plays a pivotal role in the modern vehicle's operation and safety. Let's delve deeper into their
significance.

• Speed Sensor: This sensor measures the vehicle's speed, which is crucial for various systems
such as the anti-lock braking system (ABS), cruise control, and traction control. Its periodic
behavior reflects the variations in speed as a car accelerates and decelerates.

• Temperature Sensor: Monitoring the temperature is essential for engine management. It
ensures that the engine operates within optimal temperature ranges, preventing overheating
and potential damage.

• Torque Sensor: Used primarily in electric power steering systems, this sensor helps in adjusting
the steering effort based on the torque applied by the driver, ensuring smoother and more
responsive steering.

• Acceleration Sensor: This sensor is vital for stability control systems. It detects rapid changes
in vehicle direction, allowing the car's computer to make necessary adjustments to prevent
skidding or rollovers.

• Light Sensor: Integrated into the vehicle's automatic headlight system, it detects ambient light
levels and automatically turns the headlights on or off, enhancing safety during dusk, dawn, or
in tunnels.

• Ultrasonic Sensor: Commonly used in parking assistance systems, these sensors detect
obstacles around the vehicle, providing feedback to the driver or even automating parking in
some advanced systems.

P3 digital services GmbH SofDCar Konsortium 8

• Tire Pressure Sensor: Monitoring tire pressure is crucial for both safety and fuel efficiency. A
sudden drop in pressure can be indicative of a puncture, while consistent low pressure can
lead to increased tire wear and reduced fuel economy.

• Oxygen Sensor: This sensor monitors the oxygen levels in the exhaust gases, allowing the
engine management system to adjust the air-fuel mixture for optimal combustion. This not
only ensures efficient performance but also reduces harmful emissions.

The mathematical models provided for each sensor in the table are simplifications of the real-world
signals these sensors produce. However, they capture the essential characteristics and behaviors of
the actual data. By focusing on these sensors and their interactions, we can gain a comprehensive
understanding of the vehicle's operation. These sensors were chosen not only for their individual
importance but also because, collectively, they provide a holistic view of the vehicle's functioning. In
essence, the selected sensors and their mathematical representations offer a balanced and
representative snapshot of the myriad of sensors found in a modern car. By studying these, we can
approximate the behavior and interactions of the broader sensor network in real-world scenarios,
setting a solid foundation for our analysis in the subsequent sections of this paper.

Table 2 is a selection of actuators presented, each with their respective mathematical signal
descriptions. Actuators are devices that convert energy (typically electrical energy) into motion or
physical action. In the context of a vehicle, they play a crucial role in executing the commands
generated by the vehicle's control systems based on the data received from sensors. The significance
of each actuator listed is detailed in the following:

Actuator Signal type Function type Behavior

Electric
Motor
(Window)

Continuous 𝑃𝑃(𝑡𝑡) = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 × |sin (𝜋𝜋𝜋𝜋𝜋𝜋)| Periodic, Steady State (at constant
window position)

Servo
Motor
(Steering)

Continuous 𝐴𝐴(𝑡𝑡) = 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 × sin (2𝜋𝜋𝜋𝜋𝜋𝜋) Periodic, Linear (at constant steering
motion)

Relay
(Lighting
Control)

Discrete 𝑅𝑅(𝑡𝑡) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(|sin (𝜋𝜋𝜋𝜋𝜋𝜋)|) Periodic, Steady State (at constant
light state)

Table 2: Actuators and their signals

• Electric Motor (Window): This actuator controls the movement of the car windows. The
periodic behavior of its signal reflects the up and down motion of the window, with the steady
state indicating a constant window position, either fully open, fully closed, or any position in
between.

• Servo Motor (Steering): A critical component in advanced steering systems, the servo motor
assists in steering the vehicle. Its periodic behavior can be attributed to the left and right
motions of the steering, with a linear behavior observed when the steering motion is constant.

P3 digital services GmbH SofDCar Konsortium 9

• Relay (Lighting Control): Relays in lighting control systems act as switches, turning the vehicle's
lights on or off based on inputs from sensors (like the light sensor) or manual controls. Its
periodic behavior indicates the switching on and off the lights, while the steady state suggests
that the lights remain either constantly on or off.

The mathematical models provided for each actuator in the table are designed to capture the
fundamental characteristics of how these devices operate in real-world scenarios. While they are
simplifications, they effectively represent the essential behaviors and interactions of the actual
actuators. By examining these actuators and their mathematical representations, we gain insights into
the physical actions and responses of a vehicle based on sensor inputs. These selected actuators, much
like the sensors in Table 1, offer a representative view of the broader actuator network in modern
vehicles. Understanding their operation and interactions is pivotal for our forecast analysis, as they
directly influence the vehicle's performance and safety based on the data processed from the sensors.

It is essential to note that the mathematical models provided for both sensors and actuators in Tables
1 and 2 are approximations. While they capture the fundamental characteristics and behaviors of these
components, real-world scenarios can introduce complexities and nuances that might deviate from
these models. Factors such as wear and tear, external environmental conditions, and unforeseen
interactions between components can lead to variations in actual behavior compared to our
mathematical representations. As with any model, while they serve as valuable tools, they should be
used with an awareness of their inherent limitations and the potential for real-world deviations.

2.2 Testing setup

Building upon the defined framework of sensors and actuators, we have identified a list of functions
that are considered within our synthetic dataset. These functions are integral to our model as they
represent the core actions and processes within the vehicle's operation that we aim to analyze. The
selection of these specific functions is based on their direct relevance to the sensors and actuators we
are focusing on, and on their impact on the overall performance and safety of the vehicle. This refined
function list ensures that our dataset and subsequent analyses are tightly focused, enabling us to
derive meaningful and actionable insights from our model.

Following the identification of these key functions, we have implemented function generators using
the Python programming language, specifically utilizing the SymPy framework. These function
generators serve as the mechanism for producing variations of each identified function, enriching our
synthetic dataset with a wide range of potential scenarios. To ensure a comprehensive but manageable
dataset, for each combination of functions, we generate a set of 250 distinct function instances. This
size was chosen to strike a balance between data diversity and computational efficiency. Using SymPy
allows us to model these functions effectively, given its ability to simulate the asynchronous behavior
that is typical in real-world vehicle operation. By generating variations of each function, our dataset
can cover a broad spectrum of potential vehicle states and responses, making our model more robust
and versatile. Each of these function instances represents a possible scenario that the vehicle could
encounter, enabling us to anticipate and prepare for a variety of situations in our modeling.

P3 digital services GmbH SofDCar Konsortium 10

Signal type Behavior

Continuous Periodic

Continuous Logarithmic

Continuous Linear (over certain range)

Continuous Exponential

Discrete Periodic

Table 3: Relevant data types for HiC concept

2.3 Testing pipeline

In Figure 3, the process of data generation and preparation for subsequent validation is depicted. Data
types are categorized as shown in Table 3. For each data type, there's a specialized function generator
tailored for linear, periodic, logarithmic, or exponential functions. Notably, each function generator
can produce a random assortment of functions meeting certain criteria. Every generator produces 250
distinct functions. Associated with each function type, there are time series generators. These
generators convert the SymPy functions into time series data, producing 1.000 data points for each

Figure 3: Data generation and evaluation pipeline

P3 digital services GmbH SofDCar Konsortium 11

function. In total, the dataset comprises one million data points, which will be utilized for validating
the machine learning models.

2.4 Handling signal noise

In real-world scenarios, raw data from sensors and actuators is rarely perfect. Signal noise, which refers
to random variations or fluctuations that can distort a signal, is a common challenge when processing
and analyzing data from physical systems. This noise can arise from various sources, such as electrical
interference, thermal noise, or even external environmental factors. To ensure that our model is
robust and can handle real-world imperfections, it is essential to account for and understand the
impact of signal noise on our synthetic data. Building on the synthetic datasets described in sections
2.2 and 2.3, we have embarked on creating three new datasets, each infused with different levels of
noise. This approach allows us to simulate the potential challenges and variations that might be
encountered in actual vehicle operations. Specifically, we have introduced noise with standard
deviations of 0.5, 1, and 2. These values were chosen to represent mild, moderate, and high levels of
noise, respectively:

• Mild Noise Dataset (Standard Deviation: 0.5): This dataset represents scenarios where the
vehicle's systems are operating in relatively ideal conditions, with minimal external
interferences or disturbances. Such conditions might be typical in controlled environments or
laboratory settings.

• Moderate Noise Dataset (Standard Deviation: 1): Here, we simulate a more realistic operating
environment, where typical external factors introduce a moderate level of noise. This dataset
might resemble data from a vehicle operating in standard urban or suburban settings.

• High Noise Dataset (Standard Deviation: 2): This dataset represents challenging conditions,
where significant external interferences or system imperfections introduce a high level of
noise. Such scenarios could arise in extreme weather conditions, areas with high
electromagnetic interference, or when the vehicle's sensors or systems are nearing the end of
their operational life.

To generate these noisy datasets, we utilized noise generation techniques, adding Gaussian noise with
the specified standard deviations to our original synthetic data. This process ensures that our model,
when trained on these datasets, can be tested against a variety of noise conditions, enhancing its
reliability and versatility. In subsequent analyses, these noise-infused datasets will be instrumental in
assessing the robustness of various machine learning models under different noise conditions. By
examining how noise impacts the accuracy of these models, we aim to identify which models are best
equipped to withstand the challenges of signal noise. This evaluation will help in selecting a model that
consistently delivers reliable results amidst the uncertainties presented by diverse real-world
scenarios.

P3 digital services GmbH SofDCar Konsortium 12

2.5 Summary of test set
• A synthetic dataset was created since no sufficient real data set was available.
• The generated data simulates eight sensors and three actuators.
• Each sensor and actuator are represented by a class of mathematical equations.
• The signal equations capture the essential characteristics of the sensors and actuators but are

simplifications of the real signal.
• The sensors and actuators were chosen so that a holistic view of a vehicles is generated and

have a balanced and representative snapshot of the signals exchanged in a vehicle.
• The eleven classes were classified into 5 categories.
• For each category 250 expressions were generated, with their parameters chosen randomly.
• A function generator first generates an expression and then based on the expression a time

series with 1.000 data points is generated.
• The dataset is enriched by adding noise to the generated time series, making the data more

realistic.
• Three different levels of noise were introduced, simulating mild, moderate and high levels of

noise.

P3 digital services GmbH SofDCar Konsortium 13

3. Machine Learning methods

3.1 Selected methods

The realm of machine learning offers a vast array of models tailored for time series analysis. Given the
intricacies and challenges of time series analysis, it is imperative to choose models that can capture
patterns, trends, and seasonality effectively. In this paper, we have narrowed our focus to a selected
few models, each with its unique strengths and challenges. Below is a brief overview and comparison
of these models in terms of runtime and complexity.

Within the domain of machine learning for time series analysis, we have selected a subset of models
for evaluation (see Figure 6), focusing on runtime efficiency and model complexity.

We have employed a linear regression model utilizing the, adhering to a minimalist configuration. Our
findings indicate that while linear regression demonstrates expedient computational performance due
to its elementary nature, it is constrained by its linear paradigm when modeling the multifaceted
patterns often present in time series data.

Prophet, a model introduced by Facebook, has been implemented in its standard form, without
additional customizations for seasonality or holidays. The model exhibits moderate computational
demand and offers an intuitive framework for handling seasonal variations in time series data,
maintaining an equilibrium between simplicity and the ability to address time series complexities.

Our approach with Long Short-Term Memory (LSTM) networks involved developing two distinct
architectures tailored for continuous and discrete data types. LSTMs are characterized by a moderate
runtime and elevated complexity, capable of discerning intricate data patterns and proving effective
even with limited data quantities.

Gated Recurrent Units (GRUs) were selected for their computational efficiency and substantial
modeling capability. The GRU model is designed with a ReLU activation function, optimizing
performance through the Mean Squared Error loss function and the Adam optimizer. GRUs display a
quicker runtime relative to LSTMs and possess a moderately complex architecture.

Our instantiation of the Autoregressive Integrated Moving Average (ARIMA) model concentrates on its
three principal constituents: the autoregressive, integrated, and moving average components. The
default parameterization of the model is intended to reflect a single differencing pass and a moving
average of the previous observation, with the provision for parameter adjustments based on the time
series dataset in question.

Lastly, the Seasonal Autoregressive Integrated Moving Averages (SARIMA) model is implemented with
both non-seasonal and seasonal order parameters. SARIMA's runtime varies from moderate to high,
contingent on the dataset's structure and the employed sampling methods.

In summary, our comparative analysis, conducted under predominantly default settings, reveals that
deep learning models such as LSTMs and GRUs are adept at capturing complex patterns but are
hampered by longer runtimes. In contrast, simpler models such as linear regression offer rapid
computation but may not effectively handle complex datasets. Intermediate models like Prophet and
ARIMA present a harmonized solution, with Prophet being notably accessible and ARIMA requiring
intricate parameter tuning due to its statistical framework.

P3 digital services GmbH SofDCar Konsortium 14

Figure 4: Comparison of models for time series forecasting

In Figure 4 models used and evaluated with the five categories of functions are compared. While all
models were validated across every data type, SARIMA was an exception. SARIMA is specifically
tailored for periodic and logarithmic data, making it challenging to apply to other data types.

3.2 Summary methods

• Six different models were considered.
• Linear regression is the simplest model, with the lowest run time, but its simplicity makes it

incapable of handling even slightly complex datasets.
• Prophet offers a well balance between speed and complexity, it can handle quit complex

datasets and generate results fast.
• LSTM is the slowest of all models and the most complex one, it can handle very complex data

at the sacrifice of speed.
• GRU is very similar to LSTM but with slightly less parameters, it can handle the same data as

LSTM but is a bit faster
• ARIMA models are faster the neural networks like LSTMs and GRUs, but slower than linear

regression. It can handle quit complex data but not as complex as LSTMs or GRUs
• SARIMA it is very similar to ARIMA with an extract term to handle seasonality in the dataset,

but this term makes it very difficult to use with datasets that do not show any periodicity.

P3 digital services GmbH SofDCar Konsortium 15

4. Findings & conclusions

4.1 Validation metrics

Three different metrics were used to validate models’ signal boosting ability.

• R2 Score: It measures how well the output matches the actual data. Higher scores indicate
better fit but can suggest overfitting with many features.

• Dynamic Time Warping: Measures dissimilarity between two varying-speed temporal
sequences, that is time series with data points on different points in time. Lower distances
indicate greater similarity between the series. Needs a distance metric, like the Euclidean
distance, to compute.

• Compression-Based Distance: Measures similarity between two time series using data
compression techniques. Smaller distances suggesting higher similarity. Particularly useful
when there is no defined distance metric between the two series. It is less computationally
demanding than DTW

4.2 Optimization of the hyperparameters

Employing grid search, we meticulously determined the ideal hyperparameters, ensuring our models'
peak performance and establishing a robust basis for accurate results.

ARIMA

Tuning of the ARIMA model revealed optimal hyperparameters with differencing, autoregressive, and
moving average orders all set to 0, aligning with our data's traits. This suggests we need to curry further
analysis.

LSTM

Hyperparameter optimization for the LSTM model concluded with a batch size of 16, 1 dense unit, 10
epochs, mean squared error for loss function, and 10 LSTM units using the Adam optimizer.

GRU

The GRU model was fine-tuned through rigorous optimization, leading to a batch size of 16, 1 dense
unit, 10 epochs, mean squared error loss, and 10 GRU units with the Adam optimizer for optimal
results.

4.3 Validation by data type

Linear data

With linear data GRU model demonstrated superior performance, achieving a near-perfect R2 score
and optimal DTW values; ARIMA also fares well in CBD results, while other models display a range of
high and low values (see Figure 5 and Figure 6).

P3 digital services GmbH SofDCar Konsortium 16

Periodic data

With periodic data, which mirrors common real-world patterns, GRU and LSTM models stand out,
showing commendable R2 scores. CBD metrics are generally low, indicating similarity, whereas DTW
metrics are high, suggesting differences that merit further research (see Figure 7 and Figure 8).

Logarithmic data

Logarithmic data, often seen in real-world scenarios, presents challenges; however, ARIMA and
SAMIRA models show strong performance with continuous data. The GRU model is particularly adept
at handling discrete data.

Exponential data

Characterized by consistent relative growth, exponential data poses challenges to work with. Still,
ARIMA and GRU models demonstrate a better grasp of this data type, as reflected by more accurate
R2 scores, although DTW metrics indicate a high variation across all models (see Figure 11 Figure 12).

4.4 Validation by signal noise

As highlighted in Chapter 2.4, the foundational dataset underwent modifications with varying
intensities of noise. The magnitude of this noise can be quantified by the standard deviation; a larger
value indicates increased noise. The subsequent illustrations provide insights into how these models
manage such data disturbances, offering a perspective on their robustness in handling data with
several levels of noise.

Figure 5 and Figure 6 depict the decline in performance. The Y-axis percentage indicates the extent of
performance reduction relative to the preceding less-noised dataset. It is evident that the GRU model

Figure 5: Effect of noise in discrete data on model performance

P3 digital services GmbH SofDCar Konsortium 17

experiences a smaller dip in performance compared to other models. However, the results remain
varied, with no single model excelling consistently across all data types.

4.5 Ability of real time boosting

Assessing real-time boosting capabilities, we rigorously tested the LSTM, ARIMA, and GRU models,
focusing on the immediacy and accuracy of their responses to new data. This aspect is critical for their
potential adoption in fast-paced scenarios demanding timely decisions.

Our study measured the minimum time intervals required by each model to generate 100 data points
with accuracy. The LSTM model required a minimum of 2.80 milliseconds (ms), while the GRU model
needed at least 2.60 ms for the same task, reflecting its slightly more efficient structure in some cases.

Remarkably, the ARIMA model's performance was superior in speed, demanding only 0.04 ms to
accurately generate 100 steps ahead, demonstrating the model's agility and potential suitability for
rapid-response situations.

The evaluation highlights ARIMA's speed but also prompts consideration of the trade-offs between
quick output generation, precision, and complexity. Each model's real-time boosting potential was
gauged to provide insights for scenarios where speed is paramount.

Our findings offer a comprehensive view of how each model performs without specific fine-tuning,

representing their 'out-of-the-box' capabilities across various conditions. While the GRU model shows
promise in noise resilience and accuracy, the ARIMA model's quickness is unmatched, potentially
beneficial in situations where time is critical.

Figure 6: Effect of noise in continuous data on model performance

P3 digital services GmbH SofDCar Konsortium 18

In Table 4 the summary of results is presented. The GRU neural networks are a very good candidate
for the real time enhancer, since they have shown high accuracy in a variety of data types and
robustness to noise, with reasonable speed. In

4.6 Chapter summary

• Three metrics were used to evaluate the models, R2, Dynamic Time Warping (DTW) and
Compression-Based Distance (CBD), on a variety of data with and without noise.

• In the validation of the models with noise free data the GRU shows consistently satisfactory
results in all three metrics, while having a moderately good runtime.

• The ARIMA model is the fastest model to generate results.
• When noise is added to the data GRU is affected the least of all models

Model Accuracy Robustness to noise Speed of
Output

generation

Real Time ability

Linear
Regression

Only fair results
with linear data

Poor performance
with noise

Fastest model Not tested

Prophet Mixture of
results,
consistently low
R2 score, but
good DTW and
CBD in some
cases

Moderate
performance with
noise

Moderate
speed

Not tested

ARIMA Good with
continuous data

Worst performance
with noise

Fast output 0.04 ms for 100
outputs

SARIMA Only good results
with continues
periodic data, but
low R2 score

Poor performance
with noise

Fast outputs Not tested

GRU Consistently good
results with all
data types. Only
R2 score
sometimes was
low

Best performance with
noisy data

Good speed 2.6 ms for 100
outputs

LSTM Good results with
most data types
and metrics

Very good
performance with
noise data

Good speed 2.8 ms for 100
outputs

Table 4: Summary of results

P3 digital services GmbH SofDCar Konsortium 19

5. Real-time boosting capability of HiL in the Cloud web system

5.1 Way forward

We are expecting to implement the “real-time” functionality within the upcoming months and present
towards the end of the SofDCar consortium a working minimum viable product (MVP).

5.2 Challenges of real-time achievement

Time series analysis is a complex field on its own, serving time series models in production and having
to handle a variety of signals simultaneously is even more complex. Adding to the mix, the requirement
of using the output of a model to enhance the real-time abilities of a system, makes it an incredibly
challenging problem.

First, we need to understand how the model and its output values are going to be used and integrated
into the rest of the system. In general, the model needs to generate the values of a given signal before
the generator of the signal outputs the value. One of the challenges here is with the initial output that
needs to be generated ahead of the real values when there is no data available to feed to the model.

Second, we need to clearly define the requirements for the generating model. The model needs to
generate its result well ahead of the original signal, to battle the latencies of the overall system
(network, web). To achieve this target, we need to measure the latencies between various components
of the system and have the required response time of each participating component.

As an example, let us consider the case where we have Alice and Bob communicating with each other
via a message broker. Alice is generating response signals based on Bobs request signal and vice versa.
Alice has the requirement of receiving a response signal from Bob after sending a request signal within
𝑟𝑟𝑎𝑎 𝑚𝑚𝑚𝑚, and Bob needs to receive its response within 𝑟𝑟𝑏𝑏 𝑚𝑚𝑚𝑚. Alice communication line with the broker
is a bit faster than Bob’ s line and has an average up stream delay of 𝑢𝑢𝑎𝑎 𝑚𝑚𝑚𝑚, whereas Bob’ s average
up stream delay is 𝑢𝑢𝑏𝑏 𝑚𝑚𝑚𝑚. Alice downstream delay is 𝑑𝑑𝑎𝑎𝑚𝑚𝑚𝑚 and Bob’s downstream delay is 𝑑𝑑𝑏𝑏𝑚𝑚𝑚𝑚. The
broker needs on average 𝑝𝑝 𝑚𝑚𝑚𝑚 to receive, process and transmit messages.

When Alice sends a request signal to Bob the total latency for Alice will be 𝑙𝑙𝑎𝑎 = 𝑢𝑢𝑎𝑎 + 𝑝𝑝 + 𝑑𝑑𝑏𝑏 + 𝑢𝑢𝑏𝑏 +
𝑝𝑝 + 𝑑𝑑𝑎𝑎 𝑚𝑚𝑚𝑚 which is the same for Bob as well. This is demonstrated in Figure 7 One thing to note here
is that if 𝑙𝑙𝑎𝑎 < 𝑟𝑟𝑎𝑎, then the actual response signals are received within the required latency time and
there is no need to use real-time enhancement. But if not, then there are two things we can do. One,
we can try and generate Alice request signal before Alice sends it. Two, we can generate Bob’s
response signal before Bob generates it.

If we generate Alice signal, then from the moment the generated signal is created, it will take 𝑝𝑝 + 𝑑𝑑𝑏𝑏 +
𝑢𝑢𝑏𝑏 + 𝑝𝑝 + 𝑑𝑑𝑎𝑎 𝑚𝑚𝑚𝑚 for Alice to receive the response signal from Bob. If the ML model generates its output
at time, 𝑡𝑡𝑔𝑔 then the response signal will arrive at Alice at 𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟 = 𝑡𝑡𝑔𝑔 + 𝑝𝑝 + 𝑑𝑑𝑏𝑏 + 𝑢𝑢𝑏𝑏 + 𝑝𝑝 + 𝑑𝑑𝑎𝑎. If Alice
generates the request signal at time, 𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟 then Alice will expect to receive the response by 𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟 + 𝑟𝑟𝑎𝑎.
For the response signal to arrive in time, the inequality (𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟 + 𝑟𝑟𝑎𝑎) > 𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟 must hold. We can substitute
𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟 with the variables affecting its value and get (𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟 + 𝑟𝑟𝑎𝑎) > (𝑡𝑡𝑔𝑔 + 𝑝𝑝 + 𝑑𝑑𝑏𝑏 + 𝑢𝑢𝑏𝑏 + 𝑝𝑝 + 𝑑𝑑𝑎𝑎).

P3 digital services GmbH SofDCar Konsortium 20

In Figure 7 signal exchange between two ECUs and an MQTT Broker is demonstrated. The horizontal
axis represents the time dimension, and the vertical axis represents distance relative to the Broker.

If we rearrange the inequality, we can get (𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑡𝑡𝑔𝑔) > (𝑝𝑝 + 𝑑𝑑𝑏𝑏 + 𝑢𝑢𝑏𝑏 + 𝑝𝑝 + 𝑑𝑑𝑎𝑎 − 𝑟𝑟𝑎𝑎), where 𝐻𝐻𝑎𝑎 =
𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑡𝑡𝑔𝑔 is the forecast horizon for the signal booster model. This is demonstrated in Figure 8.

Let us consider the following example, if 𝑝𝑝 = 10𝑚𝑚𝑚𝑚,𝑑𝑑𝑏𝑏 = 100𝑚𝑚𝑚𝑚,𝑢𝑢𝑏𝑏 = 150𝑚𝑚𝑚𝑚,𝑑𝑑𝑎𝑎 = 50𝑚𝑚𝑚𝑚, 𝑟𝑟𝑎𝑎 =
100𝑚𝑚𝑚𝑚, then 𝐻𝐻𝑎𝑎 > 220𝑚𝑚𝑚𝑚, which means that the signal booster needs to generate Alice signal at least
220𝑚𝑚𝑚𝑚 ahead of Alice. If we also take into consideration the time the model needs to generate its
result, call it 𝑡𝑡𝑚𝑚, then the model horizon will need to be 𝐻𝐻𝑎𝑎 + 𝑡𝑡𝑚𝑚 𝑚𝑚𝑚𝑚. If Alice is generating signals at
regular intervals of 𝑖𝑖 𝑚𝑚𝑚𝑚, then the number of steps ahead that the signal booster should generate
would be 𝑆𝑆 = (𝐻𝐻𝑎𝑎 + 𝑡𝑡𝑚𝑚)/𝑖𝑖.

There are two challenges at this point. One is if 𝐻𝐻𝑎𝑎 is high or 𝑡𝑡𝑚𝑚 is high, or both and 𝑖𝑖 is small, then the
number of steps the model needs to generate ahead is very large, making it a long-horizon problem.
In this case most probably a very different model will be needed from the one that can be used for
short horizons. In general, the error in the generated values grows as the horizon increases, so having
a model that is faster will reduce the required forecast horizon. Even if we minimize the time the model
needs to generate its outputs, the fact that the network delays between Alice, Bob and the broker
cannot be controlled by the system and can randomly change i.e., 𝐻𝐻𝑎𝑎 can vary uncontrollably, raises
the requirement to have at least two different models in production. One that can handle short horizon
outputs and one that can handle long horizon outputs, and depending on the overall latency of the
system the appropriate model is used.

The second challenge is that we need to generate the boosted signal at the right moment in time so
that the response arrives to Alice, when Alice will be expecting it, and not sooner in time when Alice

Figure 7: Signal Exchange between two ECUs and an MQTT Broker

P3 digital services GmbH SofDCar Konsortium 21

will be expecting the response of another signal. This means we need to closely monitor all the
latencies of the system and make the model able to generate the boosted signals at the right instance
in time, and not in predefine intervals. Another possible solution to this is to make the model generate
the timestamp along with the signal value, but training such model will be more difficult. We can even
try to train a Temporal Fusion Transformer which have been shown to be able to handle these kind of
problems [5].

Another challenge we might face is the problem of Alice’s signals arriving at the broker at irregular
intervals. Even if Alice is generating her signals at regular intervals, the network delays may vary, and
the perceived periodicity of Alice signals might be irregular. If the delays variation is insignificant, we
can ignore this, but if they are not, then it is something we need to take into consideration when
designing the final model and the mechanism that will feed it with data in production.

A final challenge is the number of models that might need to be deployed. If we try to have one model
for each signal that goes through the system, then we will need to train new models for every new
signal introduced in the system. Thus, we will need to have a large repository of models and keep track
which model is responsible for which signal. Eventually a continues delivery pipeline of trained models
will be needed, where a new model is trained as soon a new signal is introduced to the system. Finally,
as soon as we detect a signal joining the system, we need to deploy its corresponding model
automatically. All this will need a considerable amount of orchestration and careful resource
allocation. Another option to this problem is to have fewer models, able to boost a range of different
signals. Although this might reduce the complexity of serving and maintaining a large pool of models
in production, it is more difficult to train such generic models. Most probably a mixture of both
strategies will yield the best results, but this must be investigated.

As a final comment, we mention that we could generate Bob’s response signal before Bob generates
the response and send it to Alice. This is not as viable solution as generating Alice request signal. First,
this is the same behavior as the one we have from the virtual ecu (v-ecu) module, where a model
receives input signals, and based on these signals it generates a response signal. It does not generate
future value of the inputted signal. Second, generating responses based on past values, without having
the latest input signal value, it is extremely difficult. The underlying mechanism of the receiving module

Figure 8: Signal exchange boosted by real time enhancer.

P3 digital services GmbH SofDCar Konsortium 22

must have some correlations with past input values, and often this is not the case, especially if we have
state machines where the state is affected by each incoming signal.

In conclusion using time series analysis to enhance the real-time capabilities of a system, and
implement it in production environments, needs extensive analysis and thorough planning. The final
solution needs to be a careful balance between model accuracy and model performance. Furthermore,
the model needs to be flexible enough to handle a variety of situations arising from the uncontrollable
variations in the latencies of the overall system.

5.3 Chapter Summary

• There is the problem of initial results, where the deployed model will need to generate outputs
when there are no prior data to feed it with

• The model needs to generate its result well ahead of the actual signal, to eliminate latencies,
but not too far ahead so that it does not mix up the order of signals exchanged between ecus.

• The output horizon is affected by the delay between all components, the latency requirements
of the ecus, as well as the speed at which the model generates its results.

• The latencies between the system and the ECUs can vary, so the system must closely monitor
and feed the latencies values to the model, to control when the output is generated.

• Deploying for every signal a separate model is probably prohibited, thus signals must be
categorized.

• For each category of signals different boosting models will be needed, to handle short,
moderate, and long latencies, separately.

• Alternatively, a model must be versatile and robust enough to handle varying latency times.
• Trying to generate response signals after a trigger signal, will not help much with reducing

latency times.

P3 digital services GmbH SofDCar Konsortium 23

References

[1] T. R. Team, „Overview,“ 2023. [Online]. Available: https://docs.ray.io/en/latest/ray-
overview/index.html. [Zugriff am 11 August 2023].

[2] EMQX, „Slow subscribers statistics,“ emqx.io, 2023. [Online]. Available:
https://www.emqx.io/docs/en/v5.1/observability/slow-subscribers-statistics.html#how-it-
works. [Zugriff am 11 August 2023].

[3] R. Liul und W. Chiang, „Building a Machine Learning Platform with Kubeflow and Ray on Google
Kubernetes Engine,“ 24 September 2022. [Online]. Available:
https://cloud.google.com/blog/products/ai-machine-learning/build-a-ml-platform-with-
kubeflow-and-ray-on-gke. [Zugriff am 11 August 2023].

[4] M. Project, „MLflow Documentation,“ MLflow.org, 2023. [Online]. Available:
https://mlflow.org/docs/latest/index.html. [Zugriff am 11 August 2023].

[5] S. O. A. N. L. T. P. Bryan Lim, „Temporal Fusion Transformers for Interpretable Multi-horizon Time
Series Forecasting,“ 19 December 2019. [Online]. Available: https://arxiv.org/abs/1912.09363.

[6] L. K. J. &. P. R. Cox, „Balancing Quality and Confidentiality for Multivariate Tabular Data. 87-98.,“
2004.

[7] S. Ellis, „Instability of least squares, least absolute deviation and least median of squares linear
regression, with a comment by Stephen Portnoy and Ivan Mizera and a rejoinder by the author.
Statistical Science 13, 337-350,“ Statistical Science, 1998.

[8] L. M. A. P. M. G. A. B. A. M. C. &. M. M. Menculini, „ Comparing Prophet and Deep Learning to
ARIMA in Forecasting Wholesale Food Prices. ArXiv, abs/2107.12770.,“ 2021.

[9] A. N. D. &. L. S. Shewalkar, „Performance Evaluation of Deep Neural Networks Applied to Speech
Recognition: RNN, LSTM and GRU. Journal of Artificial Intelligence and Soft Computing Research,
9, 235 - 245.,“ 2019.

[10] T. G. M. &. B. H. Boulmaiz, „Impact of training data size on the LSTM performances for rainfall–
runoff modeling. Modeling Earth Systems and Environment, 1-12,“ 2020.

[11] A. J. V. M. C. &. B. M. Benterki, „Long-Term Prediction of Vehicle Trajectory Using Recurrent
Neural Networks. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society,
1, 3817-3822.,“ 2019.

[12] S. H. Y. Z. S. H. J. W. G. Z. M. &. L. Q. Gao, „Short-term runoff prediction with GRU and LSTM
networks without requiring time step optimization during sample generation. Journal of
Hydrology, 589, 125188.,“ 2020.

P3 digital services GmbH SofDCar Konsortium 24

II. List of figures
Figure 1: High level diagram of HiL in the cloud. ... 4

Figure 2: Deployment diagram of Speedy Lane of HiL in the cloud platform... 4

Figure 3: Data generation and evaluation pipeline ... 10

Figure 4: Comparison of models for time series forecasting ... 14

Figure 5: Effect of noise in discrete data on model performance .. 16

Figure 6: Effect of noise in continuous data on model performance ... 17

Figure 7: Signal Exchange between two ECUs and an MQTT Broker ... 20

Figure 8: Signal exchange boosted by real time enhancer. ... 21

III. List of Tables

Table 1: Sensors and their signals ... 7

Table 2: Actuators and their signals.. 8

Table 3: Relevant data types for HiC concept ... 10

Table 4: Summary of results ... 18

https://p3web.sharepoint.com/teams/P3-SDC-PROJ-HiL-in-the-Cloud/Shared%20Documents/Organisation/09_Abschlussdokumentation/01_Whitepaper1_ML_Algorithms/2023-11-03_Whitepaper%20I_HIL_v1.12.docx#_Toc154071373
https://p3web.sharepoint.com/teams/P3-SDC-PROJ-HiL-in-the-Cloud/Shared%20Documents/Organisation/09_Abschlussdokumentation/01_Whitepaper1_ML_Algorithms/2023-11-03_Whitepaper%20I_HIL_v1.12.docx#_Toc154071374
https://p3web.sharepoint.com/teams/P3-SDC-PROJ-HiL-in-the-Cloud/Shared%20Documents/Organisation/09_Abschlussdokumentation/01_Whitepaper1_ML_Algorithms/2023-11-03_Whitepaper%20I_HIL_v1.12.docx#_Toc154071375
https://p3web.sharepoint.com/teams/P3-SDC-PROJ-HiL-in-the-Cloud/Shared%20Documents/Organisation/09_Abschlussdokumentation/01_Whitepaper1_ML_Algorithms/2023-11-03_Whitepaper%20I_HIL_v1.12.docx#_Toc154071377
https://p3web.sharepoint.com/teams/P3-SDC-PROJ-HiL-in-the-Cloud/Shared%20Documents/Organisation/09_Abschlussdokumentation/01_Whitepaper1_ML_Algorithms/2023-11-03_Whitepaper%20I_HIL_v1.12.docx#_Toc154071378
https://p3web.sharepoint.com/teams/P3-SDC-PROJ-HiL-in-the-Cloud/Shared%20Documents/Organisation/09_Abschlussdokumentation/01_Whitepaper1_ML_Algorithms/2023-11-03_Whitepaper%20I_HIL_v1.12.docx#_Toc154071379
https://p3web.sharepoint.com/teams/P3-SDC-PROJ-HiL-in-the-Cloud/Shared%20Documents/Organisation/09_Abschlussdokumentation/01_Whitepaper1_ML_Algorithms/2023-11-03_Whitepaper%20I_HIL_v1.12.docx#_Toc154071380

	1. Introduction
	1.1 About SofDCar project
	1.2 Motivation for HiL in the Cloud (HiC)
	1.3 System architecture
	1.4 Summary

	2. Definition of the test set
	2.1 Selected data
	2.2 Testing setup
	2.3 Testing pipeline
	2.4 Handling signal noise
	2.5 Summary of test set

	3. Machine Learning methods
	3.1 Selected methods
	3.2 Summary methods

	4. Findings & conclusions
	4.1 Validation metrics
	4.2 Optimization of the hyperparameters
	4.3 Validation by data type
	4.4 Validation by signal noise
	4.6 Chapter summary

	5. Real-time boosting capability of HiL in the Cloud web system
	5.1 Way forward
	5.2 Challenges of real-time achievement
	5.3 Chapter Summary

	I.
	II. List of figures
	III. List of Tables

