

SOFDCAR CONSORTIUM

WHITEPAPER

„ Modeling Change Propagation in Software Systems
through Dependency Graphs.”

Published by: P3 digital services GmbH

Authors: L. Marks, D. Bartuseck, T. Müller

Issue date: December, 19th 2024

Software Update Management System

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

I
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

Abstract

The Software Update Management System addresses the challenges of multi-language dependency
analysis and secure communication in software update processes. By generating detailed dependency
graphs, modelling change propagation, and providing a secure, interactive web-based platform, the
system enhances transparency and collaboration while safeguarding proprietary information.

It incorporates a universal compiler built with Rust, supporting diverse programming languages, and a
custom graph viewer optimized for exploring software dependencies. Evaluated on the ECU software
of the Flex-Car research project across Java, Python, C++ and Go, the system operates without relying
on a compiler and can handle invalid or incomplete code, offering greater flexibility compared to Clang
and superior accuracy and functionality compared to Doxygen.

Key strengths include its customization potential and robust multi-language support, though scalability
and visualization challenges were noted for larger codebases. Future directions focus on optimizing
graph visualization with dynamic zooming and layout algorithms, expanding language integration, and
improving computational efficiency.

This work establishes a theoretical foundation for secure and scalable dependency analysis, with
applications across industries requiring complex software management. During the SofDCar
consortium a prototypical system for demonstration and validation of the research findings has been
created.

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

II
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

Table of Contents

1. Introduction ... 1

2. Fundamentals .. 2

3. Related Work ... 5

4. Methodology .. 7

5. Results .. 13

6. Conclusion .. 17

7. List of figures .. 18

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

1
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

1. Introduction

Modern vehicles are increasingly reliant on electronic control units (ECUs) for functionality
ranging from basic operations to advanced driver assistance systems. As the complexity of
software in ECUs grows, the management of updates has become a critical challenge. Original
Equipment Manufacturers (OEMs) currently depend on product concept catalogues to
communicate software updates to suppliers. However, these catalogues often do not capture
the detailed impact of changes in interconnected ECUs. This lack of granularity can result in
inefficiencies, miscommunication, and risks to the reliability of downstream systems.

A significant gap exists in the current processes used to manage software updates in ECUs.
Effective communication between OEMs and suppliers is essential, but it must balance the
need for transparency with the imperative to safeguard proprietary information. Suppliers
require precise details on the impacts of software changes on their systems, but the exchange
of such details is hindered by the risk of exposing sensitive source code. This challenge is
further complicated by the need for update mechanisms to operate seamlessly across
multiplatform environments and by the heightened security risks associated with sharing low-
level implementation details.

To address these issues, this work presents a Software Update Management System (also
referred to as “the system”) designed to improve transparency and precision in software update
communications while maintaining robust security. The system is supposed to enable detailed
tracking of software changes at the source code level and employ a dependency graph-based
model to represent how the changes propagate across different ECUs. By integrating these
features, the system is supposed to facilitate accurate and effective communication of update
impacts between OEMs and suppliers without requiring the exchange of proprietary source
code, specifications or other accompanying information.

The primary contribution of this research paper is to evaluate and model different alternatives
development for a secure, web-based application that bridges the gap between the need for
detailed update information and the protection of intellectual property and data security. The
system is designed to enhance transparency in software update communication by generating
dependency graphs that illustrate impacts of changes across interconnected, complex ECUs.

Moreover, it ensures that sensitive source code is not exposed during the process, preserving
security and IP-related requirements. Moreover, a web application architecture could ensure
multi-platform compatibility, making the future solution accessible and practical for diverse
environments and different industries. The described approach also has the potential to
streamline update management workflows and improve reliability of software systems in
modern vehicles.

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

2
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

2. Fundamentals

Software Update Mechanisms in ECUs

Electronic Control Units (ECUs) serve as the backbone of modern vehicle functionality,
encompassing tasks ranging from basic engine control to complex systems such as adaptive
cruise control. Software updates for ECUs are essential for maintaining system performance,
addressing security vulnerabilities, and introducing new features. Traditionally, these
updates are distributed using over-the-air (OTA) mechanisms or through service centers.
However, the intricate dependencies among ECUs complicate this process. Updates to one
ECU may inadvertently impact others, potentially causing system-wide disruptions.

Change Propagation in Software Systems

Change propagation is a critical aspect of software engineering, especially in systems with
high levels of interdependency, such as ECUs. A single modification in the source code of one
component can have cascading effects on related components. Dependency graphs are an
established method for modeling such relationships.

A dependency graph 𝐺 = (𝑉, 𝐸) is a directed graph where:

• 𝑉 represents the set of vertices (nodes), each corresponding to a software
component, such as an ECU or a module within an ECU.

• 𝐸 ⊆ 𝑉 × 𝑉 represents the set of directed edges, where an edge (𝑢, 𝑣) ∈ 𝐸 indicates
that the component 𝑣 depends on component 𝑢.

Each edge can also be annotated with weights 𝑤(𝑢, 𝑣) to denote the degree of dependency
or the impact of a change in 𝑢 on 𝑣. For instance, a higher weight may represent a stronger
or more critical dependency.

To enhance the expressiveness of the model, each node 𝑣 ∈ 𝑉 and each edge 𝑒 ∈ 𝐸 is
associated with an 𝑛-dimensional vector 𝒂! and 𝒂", respectively. These vectors encode key
attributes relevant to software updates and dependencies:

• Nodes (𝒂!): Attributes include properties such as the name of the software
component, version information, data type, and a time-stamp indicating when the
node was last modified.

• Edges (𝒂"): Attributes include the type of connection (e.g., functional dependency,
data exchange), the nature of the data being exchanged,
time-stamps for when the relationship was last updated and other metadata.

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

3
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

These attribute vectors enable the system to perform fine-grained analyses, such as
identifying specific kinds of dependencies or filtering nodes and edges based on their
characteristics. The inclusion of this additional information supports more precise impact
analysis and facilitates better communication between stakeholders.

Common operations on dependency graphs include:

• Transitive closure: Determines the full set of components affected by a change in any
given component.

• Cycle detection: Identifies circular dependencies, which are problematic in update
propagation.

• Impact analysis: Quantifies the potential spread of a change by analyzing the paths
originating from a given node.

By using dependency graphs, developers can systematically evaluate the consequences of
changes and devise strategies to mitigate unintended effects.

Product Concept Catalogues and Their Role

In the automotive industry, OEMs rely on product concept catalogues to manage the
communication of software updates with suppliers. These catalogues describe the functional
and operational aspects of ECUs and serve as a reference for assessing the impact of
changes. While they provide a high-level view, product concept catalogues often lack the
granularity needed to capture the intricate effects of software updates on interdependent
ECUs. This limitation underscores the need for a more precise and detailed approach to
managing software update impacts.

Importance of Source Code Analysis

Source code analysis plays a vital role in understanding the behavior and dependencies of
software components. By examining the source code, developers can identify relationships
between components, determine the impact of changes and predict potential issues.
However, in collaborative environments involving multiple stakeholders, sharing raw source
code is often impractical due to intellectual property concerns and security risks. This
challenge necessitates alternative methods for extracting and communicating dependency
information without exposing the underlying source code.

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

4
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

Web-Based Application for Multi-Platform Support

In today’s increasingly connected world, software systems must support a wide range of
platforms and devices. A web-based application is an ideal choice for managing software
updates in ECUs, as it ensures compatibility across different operating systems and devices.
By leveraging web technologies, the proposed prototypical system provides a user-friendly
and universally accessible interface, facilitating seamless interaction between OEMs and
suppliers.

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

5
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

3. Related Work

Tools and Insights for Dependency Analysis in Software Systems

Dependency analysis is a critical aspect of software engineering, with various tools and
frameworks developed to manage and visualize dependencies. These tools have been
instrumental in understanding and optimizing software structures, yet they often fall short in
addressing the needs of multi-language systems or complex interdependencies.

For language-specific analysis, tools such as Snakefood and pydeps generate dependency
graphs for Python codebases, offering insights into module imports. Similarly, JDepend and
Classycle provide dependency analysis and design quality metrics for Java, while tools like
Include-What-You-Use and Doxygen assist in managing header file dependencies in C and
C++ projects. Doxygen, in particular, generates class hierarchies, function call graphs, and
collaboration diagrams, providing a structured view of software systems. However, its
dependency visualizations are static and lack granularity, such as connection types or time-
stamped changes, making it unsuitable for dynamic or multi-language environments. Tools
like CodeTriage DepGraph cater to Ruby projects but are confined to that specific ecosystem.

Advanced tools such as Structure101, CodeScene, SonarQube, and SourceTrail extend
beyond single languages by offering code complexity analysis and dependency visualization.
Despite their capabilities, these tools often struggle with integrating dependencies across
multiple programming languages or require extensive customization to handle diverse
systems effectively.

Academic research complements these tools by addressing their limitations and proposing
methodologies for managing dependencies in multi-language systems. Callo Arias et al.
(2011)1 conducted a systematic review of dependency analysis solutions, emphasizing the
challenges posed by complex interconnections and the need for explicit dependency
representation. Abdellatif et al. (2020)2 introduced techniques for analyzing inter-language
dependencies, focusing on both static and historical approaches to unify dependency data
across heterogeneous systems. Similarly, Shatnawi et al. (2019)3 proposed foundational
requirements for static analysis in multi-language environments, highlighting the difficulty of
integrating analysis across diverse languages.

1 https://doi.org/10.1007/s10664-011-9158-8

2 https://doi.org/10.1109/QRS51102.2020.00070

3 https://arxiv.org/abs/1906.00815

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

6
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

More theoretical perspectives, such as those offered by Blanco et al. (2022)4, define multi-
language semantics and explore the challenges of static analysis in heterogeneous systems.
Their work provides a formal foundation for future tools capable of bridging the gap
between languages. Finally, real-world studies, such as the catalog of unintended software
dependencies in Multi-Lingual Systems at ASML by Groot et. al. (2024)5, shed light on
practical challenges like unexpected interactions between components written in different
languages and offer actionable recommendations for mitigating these issues.

Limitations of Existing Tools and Approaches

Despite the variety of tools and methodologies, several key challenges persist. Most existing
tools are language-specific, making them unsuitable for modern software systems that often
incorporate multiple languages. Even advanced tools and frameworks lack the capacity to
integrate dependency data seamlessly across diverse programming languages. Additionally,
current solutions often provide high-level overviews of dependencies without capturing
detailed attributes such as connection types, data formats, or time-stamped changes, which
are critical for understanding the impact of software updates. Scalability is another
significant issue, as tools designed for single-language projects often struggle to handle the
complexity of multi-language, interconnected systems.

Approach

To address these limitations, we researched on a prototypical Software Update
Management System designed for multi-language support and detailed dependency
analysis. By merging dependency graphs generated from source code written in different
languages, the prototypical approach provides a comprehensive view of the system.
Furthermore, system captures detailed attributes of dependencies, such as connection
types, data formats and timestamps, ensuring precise and actionable insights into change
propagation. The approach bridges the gap left by existing tools, enabling seamless
communication between OEMs and suppliers while maintaining security, IP constraints as
well as transparency.

4 https://doi.org/10.1007/s10703-022-00405-8

5 https://doi.org/10.1145/3639477.3639725

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

7
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

4. Methodology

Figure 1: Transformation of source Code into dependency graphs (prototype application)

System Overview

The modeled Software Update Management System is designed to investigate and address
challenges in multi-language dependency analysis and secure communication of software
updates. By generating dependency graphs directly from source code (see Figure 1),
modeling change propagation, and providing a secure web-based interface, the system
bridges the gap between software insights and the need to protect intellectual property. The
key components of the demonstrator include a multi-language compiler, techniques for
dependency graph generation, algorithms for change propagation and a custom-built graph
viewer optimized for software exploration.

Figure 2: Exemplary CST of source Code (cropped)

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

8
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

Generation of Dependency Graphs

The system parses source code from various programming languages and generates
Concrete Syntax Trees (CSTs) (see Figure 2). This parsing process analyzes all source files to
ensure complete coverage. From these CSTs, dependency graphs are created (see Figure 3),
with each node and edge enriched by an 𝑛-dimensional vector that includes attributes such
as memory allocation details, timestamps and data types.

Figure 3: First step : CST extraction (copped picture)

To handle multi-language systems, the demonstration system serves as a universal compiler
by defining language-specific grammars. Dependency graphs are abstracted to prevent
inversion, achieved by merging edges or converting groups of nodes into single edges (see
Figure 4). Sensitive details are hidden in “metadata”, ensuring the graphs are useful for
analysis without exposing proprietary code.

Figure 4: Simplified abstraction process (3-step approach)

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

9
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

Web Application Architecture

The demonstration system is implemented as a web-based application for accessibility
across platforms. The backend manages server-side operations and APIs. The frontend
provides an interface for users to interact with dependency graphs.

A custom graph viewer powers near real-time visualization capabilities which are crucial for
a potential practical use of the viewer by software and test engineers (see Figure 5). The use
of Rust ensures sufficient performance for real-time rendering of complex dependency
graphs and an efficient exploration and modification of the graphs.

Figure 5: Visualization of tool prototype / graph viewer

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

10
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

Modeling Change Propagation

The system can use combinations of pathfinding algorithms, graph traversal techniques, and
methods from binary addition and Set Theory to model change propagation (see Figure 6).

These techniques enable the demonstration system to:

• Identify “components” affected by a change (graph traversal)
• Quantify the cumulative impact of changes (binary addition)
• Manage overlapping dependencies and maintain consistency (set theory operations)

The algorithms handle edge cases such as cyclic dependencies or disconnected components,
providing accurate modeling of real-world software systems. These methods offer detailed
insights into the effects of software updates, aiding in in-depth analysis, decision-making and
planning.

Figure 6: Visualized Change Propagation (example project)

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

11
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

Security and Data Privacy

The system architecture is capable of confidentiality for source code by abstracting
dependency graphs into non-invertible representation. Techniques such as edge merging,
node-to-edge conversion and metadata obfuscation obscure the original structure of the
source code. Inner vector components of the graphs are encrypted, with decryption keys
accessible only to the custom graph viewer.

The dual-layered security approach of the demonstration system balances transparency and
confidentiality, protecting intellectual property while enabling effective and efficient
collaboration between different parties.

Figure 7: Multi-Layered System architecture for Secure Digital Twins

The overall concept for the system allows secure data sharing through the internet by
implementing advanced encryption and verification mechanisms (see Figure 7). Before
sharing, digital twins are encrypted by various encryption methods to safeguard their
integrity and confidentiality. The encryption secures the metadata and decryption keys as
well the main data payload, ensuring a holistic and robust data protection approach. The
digital twin is also signed digitally, providing cryptographic proof of its origin and integrity of
data and source.

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

12
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

To enhance usability, the system converts data into a different file format for structured
transmissions. This enables seamless integration with existing systems while maintaining
strict security and readability protocols. By combining encryption, digital signatures, and
secure data formats, the system establishes a trusted pipeline for sharing sensitive data over
the internet.

Researched Features and Innovation

For the demonstration system innovative languages (e.g Rust) have been evaluated in order
to improve computational efficiency and scalability for future use in real ECU network
environments to enable fast parsing of diverse codebases and real-time visualization of large
dependency graphs / networks. This enabled the system already during research phase to
perform even well with complex multi-language codebases.

By integrating various success factors and the capabilities described above into a cohesive
framework, future systems can provide scalable and valuable solutions for dependency
analysis and software update management. The evaluation of the different methodologies
and approaches resulted in a demonstrating system, that needs to be developed further to
become a tool for OEMs and their suppliers in software driven industries.

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

13
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

5. Results

Evaluation Scenarios

The proposed system was evaluated on multiple programming languages (Java, Python, C++,
Go) to demonstrate its multi-language capabilities. Testing was conducted on ECU software
of the Flex-Car research project, which provided a complex and realistic use case for multi-
language systems. The evaluation criteria and test cases included generation of dependency
graphs, modeling of change propagation and visualization of relevant outputs using the
custom prototype graph viewer.

Evaluation Metrics

The system’s performance was assessed using two primary metrics:

1. Memory Efficiency: The ability of the system to process and visualize large codebases
without excessive memory consumption.

2. Accuracy: The precision of the generated dependency graphs and change
propagation models, measured against expected outputs and manual verification.

Comparative Analysis

The system was compared against two established tools (Doxygen, Clang), which are widely
used for dependency analysis and code visualization. The comparison revealed several
strengths of the new system approach:

• The prototypical compiler outperformed Doxygen and Clang in handling diverse
programming languages while maintaining higher accuracy in dependency graphs.

• The system’s ability to abstract and encrypt sensitive details in the graphs provided a
significant advantage in terms of security.

However, certain challenges were noted that need to be addressed by future development:

• Performance Decline with Larger Codebases: As the number of source code
components was increased during research, visualization became cluttered and less
intuitive – thus limiting its usability.

• Decreasing Computational Performance: The prototype system (demonstrator)
exhibited a drop in processing speed as the codebase size grew.

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

14
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

Visualizations

The prototype system was used to evaluate alternative visualization options by showcasing
its capabilities and compare alternative GUI formats.

Dependency graphs can provide an enhanced view on relationships between various
software components, capture key attributes (such as memory allocation, data flow,
timestamps) for changes. These graphs were designed to enable developers and other
stakeholders to understand the intricate dependencies in the software, offering valuable
insights into how individual components interacted.

Change propagation visualizations is supposed to add further dimensions by illustrating how
modifications in one part of the code could or actually do affect others. These “views”
support the dynamic nature of software systems helping to predict and manage potential
ripple effects of updates.

Additionally, the custom graph viewer demonstrated its interactivity and flexibility by
allowing users to explore these visualizations in a tailored manner. Features such as
zooming, filtering, and metadata access were seamlessly integrated, providing users with the
tools necessary to focus on specific areas of interest within the dependency graphs. The
visualizations, while powerful, revealed challenges in handling larger codebases, as the
increasing complexity led to cluttered representations that became less intuitive. These
insights underscored the need for continued optimization to enhance clarity and usability for
larger projects.

Observations and Insights

While the system demonstrated robust multi-language support and superior accuracy
compared to existing tools, several key observations emerged:

• Scalability Challenges: Visual clutter becomes a significant issue for larger projects,
indicating needs for additional features (e.g. graph simplifications)

• Strengthening the Compiler: the prototypical compiler consistently outperformed
other established “solutions” in multi-language support and processing capabilities,
still reaffirming and challenging of current architecture footprint & code design needs
to be further investigated

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

15
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

Previous research findings demonstrated that the demonstrator system excels in its ability to
provide accurate and secure dependency analysis for multi-language software systems. A
key strength is the high degree of customization within the compiler, allowing new
languages to be integrated with “relative ease”. The accuracy of the generated dependency
graphs and change propagation models also stands out as a major advantage compared to
existing tools.

Despite strengths of the demonstration system, the system concept still faces challenges in
two areas: computational performance and graph visualization.

As the size and complexity of codebases increase, the system’s performance declines, and
the visualizations become cluttered and harder to interpret - these limitations of the
demonstrator indicate the focus of further refinements to ensure usability and scalability in
complex real-life projects.

Limitations

The primary limitations identified during the SofDCar consortium include:

• High Expertise Requirements: Integrating a new language into the universal

compiler requires advanced knowledge and can be time-intensive.

• Visualization Challenges: The current graph viewer struggles to maintain clarity
with larger and more complex codebases, resulting in reduced intuitiveness.

• Performance Bottlenecks: Computation time increases significantly with larger
projects, affecting the efficiency of dependency analysis and visualization.

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

16
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

Future Works

To address the above limitations and enhance the system’s capabilities, several
improvements are proposed and will be focus of further next steps:

1. Pre-computing of Node Positions (as focus topic for graph viewer enhancement –
target: more “intuitive” and more performant user experience)

2. Dynamic Zooming Techniques as feature for complexity reduction

3. Language Integration (easy-to-use module for fast integration of new languages)

4. Expanding Language Support (increasing range of supported languages to cover
domain-specific systems and emerging programming languages)

5. Overall Performance Optimization

Broader Implications

The system architecture and overall concept have the potential to significantly improve
collaboration between OEMs and suppliers by provision of a secure and transparent
platform for software update management.

Beyond the automotive domain, the methodology could also be adapted for use in other
practices and industries (healthcare, finance), where complex, multi-language systems
require robust dependency analysis and change management.

By addressing current limitations and pursuing the proposed future directions, the system
can become a versatile and indispensable approach for effective software development in
the future.

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

17
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

6. Conclusion

Our research addressed the challenges of multi-language dependency analysis and secure
communication in software update management. By developing a demonstrator system that
generates accurate and secure dependency graphs, models change propagation and
visualizes complex software relationships, it provides a promising basis for a reliable
software system for future update management processes.

Key research artefacts included a universal compiler and the custom graph viewer. The
integration of advanced algorithms and abstraction techniques ensures a sufficient level of
protection of the data and overall systems while maintaining high analytical precision. The
system demonstrated superior accuracy and flexibility compared to existing tools and its
ability to customize the compiler function for new languages highlights its adaptability.

Performance and visualization challenges were identified, particularly with larger codebases,
emphasizing the need for ongoing optimization.

Based on the prototypical solution far-reaching implications for industries reliant on
complex, multi-language systems could be derived.

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

18
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

7. List of figures

Figure 1: Transformation of source Code into dependency graphs (prototype application) 7

Figure 2: Exemplary CST of source Code (cropped) ... 7

Figure 3: First step : CST extraction (copped picture) .. 8

Figure 4: Simplified abstraction process (3-step approach) .. 8

Figure 5: Visualization of tool prototype / graph viewer .. 9

Figure 6: Visualized Change Propagation (example project) .. 10

Figure 7: Multi-Layered System architecture for Secure Digital Twins 11

Software Update Management System
Modeling Change Propagation in Software Systems Through Dependency Graphs

19
P3 digital services GmbH (Dec. 2024) SofDCar Konsortium

P3 group
P3 is an independent and international consulting company that offers consulting and engineering
services, as well as software development for numerous customers. Since its founding in 1996 in
Aachen, Germany, P3 always found new branches and has over 1900 employees in 26 locations in close
vicinity of its customers.

Vision - We advise our clients strategically in the areas of technology strategy, business process
optimization and organizational development. P3 develops new business models, opens up future
revenue sources for the clients and accompanies them in building up competencies.

Perspective - We carry out complex projects and optimize business processes in customer
organizations and their global supplier network. P3 supports and empowers customer organizations
to create robust structures to operate sustainably and grow in the future.

Insight - We develop & test innovative IT solutions for specific business requirements. From individual
solutions to cloud-based IoT services. P3 delivers end-to-end solutions in the area of security consulting
and ensures a seamless service and product rollout.

